ISSN 1600-5368

Wu Li, Lu Yang* and Qi-Tai Zheng

Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, 1 Xiannong Tan Street, Beijing 100050, People's Republic of China

Correspondence e-mail: luy@imm.ac.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.070 wR factor = 0.177 Data-to-parameter ratio = 9.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

8,9-Dimethoxy-6-methyl-6,11,12,14-tetrahydro-6aH-1,3-dioxolo[4,5-h]isoquino[2,1-b]isoquinoline

The title compound, $C_{21}H_{23}O_4N$, also known as cavidine, contains four fused six-membered rings and one fused fivemembered ring. Both of the rings of the perhydroquinolizine residue adopt a half-chair conformation, while the remaining rings are essentially planar. Received 15 June 2006 Accepted 23 June 2006

Comment

The title compound, (I), also known as cavidine, is an isoquinoline alkaloid isolated from *Colydalis tbalictrifolia* (Yu *et al.*, 1970). As part of an investigation into the conformations of alkaloids, we have synthesized (I) and determined its relative configuration by X-ray crystallographic analysis.

In (I) (Fig. 1 and Table 1), rings *B* and *C* each adopt a halfchair conformation. The remaining rings (*A*, *D* and *E*) are each essentially planar, with r.m.s deviations of 0.006 (2), 0.002 (2) and 0.004 (2) Å, respectively. The bond lengths and angles are normal (Allen *et al.*, 1987).

Experimental

Compound (I) was prepared according to the procedure of Iwasa *et al.* (1981). A single crystal of (I) was obtained by slow evaporation of an ethanol solution at 283 K over a period of two weeks.

Figure 1

© 2006 International Union of Crystallography All rights reserved View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

organic papers

Crystal data

C₂₁H₂₃NO₄ $M_r = 353.40$ Orthorhombic, $P2_12_12_1$ a = 7.740 (1) Å b = 8.232 (1) Å c = 28.499 (2) Å V = 1815.8 (3) Å³

Data collection

MAC DIP 2030K diffractometer ω scans Absorption correction: none 9552 measured reflections

Refinement

 Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0652P)^2$
 $R[F^2 > 2\sigma(F^2)] = 0.070$ + 1.0977P]

 $wR(F^2) = 0.177$ where $P = (F_o^2 + 2F_c^2)/3$

 S = 1.09 $(\Delta/\sigma)_{max} = 0.004$

 2261 reflections
 $\Delta\rho_{max} = 0.23$ e Å⁻³

 236 parameters
 $\Delta\rho_{min} = -0.26$ e Å⁻³

 H-atom parameters constrained
 Extinction coefficient: 0.079 (9)

Z = 4

 $D_x = 1.293 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, colourless

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

2261 independent reflections

1920 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 295 (2) K

 $\begin{aligned} R_{\rm int} &= 0.068\\ \theta_{\rm max} &= 27.2^\circ \end{aligned}$

Table 1

Selected torsion angles (°).

C11-C12-N13-C14	-170.2(4)	C6-C6A-N13-C14	72.3 (4)
C11-C12-N13-C6A	66.9 (5)	C6B-C6A-N13-C12	-41.1 (5)
C6B-C6A-N13-C14	-164.1 (3)	C6-C6A-N13-C12	-164.8 (4)

In the absence of significant anomalous scattering, 1241 Friedel pairs were merged. Since there is no chemical evidence to support the assignment of absolute configuration, only the relative configuration was determined. H atoms were included in the riding model approximation, with C-H = 0.93–0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}$ (methyl C).

Data collection: *DENZO* (Otwinowski & Minor, 1997); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97*; molecular graphics: *ORTEPII* (Johnson, 1976) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the financial support of the International Centre for Diffraction Data.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Iwasa, K., Gupta, Y. P. & Cushman, M. (1981). J. Org. Chem. 46, 4744-4750.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst.. 36, 7-13.
- Yu, C. K., Maclean, D. B., Rodrigo, R. G. A. & Manske, R. H. F. (1970). Can. J. Chem. 48, 3673–3678.